Bayesian Averaging, Prediction and Nonnested Model Selection
نویسنده
چکیده
This paper studies the asymptotic relationship between Bayesian model averaging and postselection frequentist predictors in both nested and nonnested models. We derive conditions under which their difference is of a smaller order of magnitude than the inverse of the square root of the sample size in large samples. This result depends crucially on the relation between posterior odds and frequentist model selection criteria. Weak conditions are given under which consistent model selection is feasible, regardless of whether models are nested or nonnested and regardless of whether models are correctly specified or not, in the sense that they select the best model with the least number of parameters with probability converging to 1. Under these conditions, Bayesian posterior odds and BICs are consistent for selecting among nested models, but are not consistent for selecting among nonnested models. JEL Classification: C14; C52
منابع مشابه
Nonnested Model Selection Criteria
This paper studies model selection for a general class of models based on minimizing random distance functions. The proposed model selection criteria are consistent, regardless of whether models are nested or nonnested and regardless of whether models are correctly specified or not, in the sense that they select the best model with the least number of parameters with probability converging to 1...
متن کاملModel selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests.
Model selection is a topic of special relevance in molecular phylogenetics that affects many, if not all, stages of phylogenetic inference. Here we discuss some fundamental concepts and techniques of model selection in the context of phylogenetics. We start by reviewing different aspects of the selection of substitution models in phylogenetics from a theoretical, philosophical and practical poi...
متن کاملCatching Up Faster in Bayesian Model Selection and Model Averaging
Bayesian model averaging, model selection and their approximations such as BIC are generally statistically consistent, but sometimes achieve slower rates of convergence than other methods such as AIC and leave-one-out cross-validation. On the other hand, these other methods can be inconsistent. We identify the catch-up phenomenon as a novel explanation for the slow convergence of Bayesian metho...
متن کاملModeling Factors Affecting Tax Evasion in Iran's Economy Based on the Bayesian averaging approach
This study seeks to model tax evasion and identify how effective factors affect tax evasion in the Iranian economy. Recent models show the failure of traditional models; Models do not have enough ability to model hidden variables such as tax evasion. The present study considers this failure in identifying explanatory variables and experimental model design. To achieve this, the Bayesian averagi...
متن کاملPrediction of Linear Models: Application of Jackknife Model Averaging
When using linear models, a common practice is to find the single best model fit used in predictions. This on the other hand can cause potential problems such as misspecification and sometimes even wrong models due to spurious regression. Another method of predicting models introduced in this study as Jackknife Model Averaging developed by Hansen & Racine (2012). This assigns weights to all pos...
متن کامل